Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics.
نویسندگان
چکیده
BACKGROUND Continuous glucose monitoring is crucial to developing a successful artificial pancreas. However, biofouling and host response make in vivo sensor performance difficult to predict. We investigated changes in glucose diffusivity and sensor response of optical enzymatic glucose sensors due to biological exposure. METHOD Three hydrogel materials, poly(2-hydroxyethyl methacrylate) (pHEMA), poly(acrylamide) (pAM), and poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) (p(HEMA-co-AM)), were tested for glucose diffusivity before and after exposure to serum or implantation in rats for 1 month. Luminescent sensors based on these materials were measured to compare the response to glucose before and after serum exposure. RESULTS Glucose diffusivity through the pHEMA [(8.1 ± 0.38) × 10(-8) cm(2)/s] slabs was much lower than diffusivity through pAM [(2.7 ± 0.15) × 10(-6) cm(2)/s] and p(HEMA-co-AM) [(2.5 ± 0.08) × 10(-6)]. As expected from these differences, sensor response was highly dependent on material type. The pHEMA sensors had a maximum sensitivity of 2.5%/(mg/dl) and an analytical range of 4.2-356 mg/dl, while the p(HEMA-co-AM) sensors had a higher sensitivity [14.9%/(mg/dl)] and a narrower analytical range (17.6-70.5 mg/dl). After serum exposure, the pHEMA sensors were unaffected, whereas the p(HEMA-co-AM) sensors exhibited significantly decreased sensitivity and increased analytical range. CONCLUSIONS Decreases in glucose diffusivity in the polymers resulting from in vitro serum exposure and residence in vivo were shown to be similar, suggesting that serum incubation was a reasonable approximation of in vivo fouling. While biofouling is expected to affect the response of flux-based sensors, we have shown that this depended on the type of sensor and matrix used. Therefore, proper design and materials selection may minimize response alterations occurring upon implantation.
منابع مشابه
Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels
An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of pHEMA and poly(acrylamide) (pAam). Diffusion ...
متن کاملEffect of Hydrophobic Pollution on Response of Thermo-Sensitive Hydrogel
Hydrogels are widely studied for chemical sensors. However, they are known to adsorb organic compound and metal ions. The adsorption abilities of hydrogels against organic compounds and metal ions will negatively affect the performance of a hydrogel based chemical sensor. To clarify the effect of hydrophobic pollution on swelling behavior of temperature-sensitive gel, the temperature-responses ...
متن کاملMass Transfer During the Pre-Usage Dehydration of Polyvinyl Alcohol Hydrogel Wound Dressings
Nowadays, hydrogels are widely used as wound dressings in biomedical applications. Similar to other types of the moist (wet) wound dressings, it is necessary to have sufficient information about their dehydration kinetics during the pre-usage period (e.g. storage duration) and also the wound healing process. In this work, hydrogel wound dressings based on polyvinyl alcohol were prepared by...
متن کاملInfluence of hydrogel polymer and NO3-: NH4+ ratios on dill (Anethum graveolens L.) seed essential oil composition and yield
To evaluate the effects of hydrogel polymer levels (0, 10, 20, 30 g m-2) and NO3:NH4 ratios (0: 100, 25: 75, 50: 50, 75: 25, and 100: 0) on dill seed yield and its essential oil constituents, an experiment was conducted in October 2012 in the experimental field of Islamic Azad University, Jiroft, Iran. Results showed that using 30 g m-2 hydrogel polymer with 75NO3-: 25 NH4+ ratio produced ...
متن کاملCentral Composite Design for the Optimization of Hydrogel Based pH-Dependent Extraction and Spectrophotometric Determination of Mercury
In the present work a pH-dependent cloud point extraction procedure using pH-sensitive hydrogel polymer was applied for preconcentration and spectrophotometric determination of the Hg(II) as its Thio micher's ketone complex. Central composite design (CCD) and response surface method were applied to design the experiments and find out the optimum conditions. Four factors entitled concentration o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of diabetes science and technology
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012